We Support The Free Share of the Medical Information

Tactical Emergency Casualty Care

Tactical Emergency Casualty Care
Curso TECC España

Facebook EMS SOLUTIONS INTERNATIONAL

lunes, 31 de julio de 2017

Mitos en Trauma Prehospitalario by Revista EMSWORLD en Español




"Derribando los Máximos Mitos del Trauma" 

Nota: Este artículo apareció originalmente en la edición en ingles de la Revista EMS World y fue traducido por un voluntario. Si usted ve errores o quiere sugerir un cambio, favor de avisarnos por correo a editor@emsworld.com.




Objetivos
• Identificar varias suposiciones preconcebidas sobre la atención del trauma e intervenciones del paciente
• Identificar la evidencia clínica refutando la omisión de las vías aéreas nasofaríngeas en la atención al trauma
• Describir las limitaciones de la lidocaína en la secuencia de inducción rápida, la hora dorada, y las estrategias de extracción e inmovilización
• Explicar las mejores prácticas actuales basadas en la evidencia para el control de la hemorragia y la estabilización de la columna del paciente
Durante la última década, la atención prehospitalaria ha experimentado una transformación hacia la medicina basada en evidencias. Los avances en la investigación han cambiado el cómo los proveedores de atención prehospitalaria realizan RCP, el manejo de los pacientes que sufren ataque cardíaco, accidente cerebrovascular y el uso de luces y sirenas. Desafortunadamente, desde que la atención prehospitalaria fue fundada en el concepto de la aplicación de las buenas ideas que parecían ser del sentido común, algunas de las habilidades y prácticas realizadas en viejos servicios de emergencia médica permanecen basadas en poco más que la aceptación cultural en lugar de la medicina y en la investigación probada. La columna de este mes de educación continua (EC) está dedicada a desacreditar esos mitos respecto a la atención del paciente de trauma y explicar las mejores prácticas reales para estos pacientes.
Mito # 1:
Nunca insertar una cánula nasofaríngea en pacientes con traumatismo craneoencefálico
Explicación del mito: Mientras que la colocación de las cánulas nasofaríngeas, sondas nasogástricas e intubaciones por vía nasal son comunes en la medicina de emergencia, en los salones de clase para los servicios médicos de emergencia se ha enseñado por mucho tiempo que cuando se sospecha de un traumatismo craneoencefálico, sobre todo una fractura de base de cráneo, es probable que al colocar algo en las fosas nasales aquello entre a través el hueso blando de la lámina cribosa (cráneo) y penetre en el cráneo, en lugar de ser colocado en la vía aérea.
La evidencia
Una revisión exhaustiva sobre el uso y las indicaciones de las vías aéreas nasofaríngeas fue publicada en el 2005 en el Journal of Emergency Medicine. Esta revisión admitió ampliamente que se enseña que las fracturas de cráneo son una contraindicación para la colocación de cánulas nasofaríngeas; se identificaron sólo dos informes de casos, a partir de 2005, en toda la medicina publicada. Un informe fue publicado en 1991 enAnesthesiology, y el otro en el Journal of Trauma en 2000.1 Estos autores concluyeron que la colocación de una cánula nasofaríngea a través del cráneo es extremadamente rara y probablemente se asocie con una técnica inadecuada, así como con lesiones que ya cuentan con morbilidad y mortalidad significativas. Esta postura fue seguida por un caso reportado en 2006 y las cartas de tres médicos de Londres al Journal of Emergency Medicine. En su carta, los médicos informaron de otro caso de una cánula nasofaríngea en el cráneo después de un traumatismo facial grave en un paciente cuyas vías respiratorias no podrían haber sido manejadas de otro modo debido a una mandíbula apretada. Los autores coincidieron en que la colocación de una cánula nasofaríngea en el cráneo es extremadamente rara y muy probablemente a causa una mala técnica de colocación. Fue su opinión que el manejo de la vía aérea debe prevalecer sobre el riesgo de una consecuencia extremadamente rara2. Además, la colocación de cánulas nasofaríngeas se recomienda entre los proveedores militares de atención prehospitalaria, incluso en el caso de traumatismo craneoencefálico. David Steinbruner (médico, junto con otros) Identificó que la postura militar de la colocación apropiada de una cánula nasofaríngea para establecer una vía aérea permeable ofrece significativamente mayor beneficio en el mejor manejo de la vía aérea que el riesgo relativamente pequeño de que la cánula pueda penetrar el cráneo3.
Diferentes y múltiples fuentes apoyan la colocación apropiada de la vía aérea nasal para los pacientes con lesiones en la cabeza. Aquí la clave está en el uso de una técnica adecuada, en detenerse cuando se encuentra resistencia y dirigir la cánula a lo largo de la base de la cavidad nasal como se muestra en la Figura 1a. Dirigir cualquier dispositivo nasal hacia arriba, hacia los ojos, aumenta la probabilidad de complicaciones. Tenga en cuenta que este artículo está encaminado al uso de las vías aéreas nasofaríngeas y no la intubación nasal o colocación de sondas nasogástricas en lesiones de la cabeza. Estos dos últimos dispositivos son más rígidos que las cánulas nasofaríngeas y las sondas nasogástricas, en particular, pueden tener una mayor probabilidad de comprometer la base de cráneo.
El resultado final
La colocación de una vía aérea nasofaríngea se puede realizar con seguridad en pacientes con traumatismo craneoencefálico cuando es necesario el manejo de las vías respiratorias. El beneficio de establecer una vía aérea sobrepasa al increíblemente pequeño riesgo de que la cánula nasofaríngea penetre al cerebro.
Mito # 2:
La lidocaína en la secuencia de inducción rápida previene el aumento de la presión intracraneal en el paciente con lesión cerebral
Explicación del mito: es sabido que la manipulación de la laringe y la intubación endotraqueal se asocian con un aumento transitorio de la presión intracraneal (PIC), y los pacientes que tienen traumatismo craneoencefálico con aumento de la PIC se consideran con un mayor riesgo de lesión cerebral secundaria. Ya que un aumento transitorio de PIC podría disminuir la presión de perfusión cerebral, no se escatiman esfuerzos para controlar la presión intracraneal. En teoría, la lidocaína impide este aumento transitorio de la PIC, lo que ayuda a prevenir una lesión cerebral secundaria. En 1980 apareció la primera evidencia con respecto a la lidocaína como medida preventiva, cuando Robert Bedford, (médico, junto con otros), publicó su artículo, "La lidocaína previene el aumento de la PIC después de la intubación endotraqueal," cuando monitoreó a 20 pacientes que fueron sometidos a neurocirugía electiva. Sus resultados mostraron que mientras que los pacientes que recibieron lidocaína experimentaron un aumento de la PIC, fue significativamente menor que aquellos pacientes que recibieron un placebo. Por último, estos resultados se extrapolaron al uso de la lidocaína como parte de la secuencia de la medicación para la intubación, aunque este estudio no abordó esta cuestión en absoluto.
La evidencia
Los doctores Mike Clancy y Neil Robinson revisaron toda la literatura disponible sobre el uso de la lidocaína en la secuencia de inducción rápida y publicaron sus hallazgos en 2001. Después de una exhaustiva revisión de la literatura, sólo encontraron seis artículos que aludían a la lidocaína y los cambios de la presión intracraneal. No hay artículos de estudios sobre el uso de la lidocaína durante la secuencia de inducción rápida. Los autores concluyeron que no hay evidencia para apoyar el uso de la lidocaína como una intervención clínica durante la secuencia de inducción rápida y recomiendan que su administración se limitare a pruebas clínicas4.
Aunque no hay evidencia para sustentar el uso de la lidocaína, ¿hay evidencia que sugiera que la lidocaína causa daño? Un artículo que apareció en 2012 en el American Journal of Emergency Medicine determinó que la lidocaína no tuvo impacto en la estabilidad hemodinámica de los pacientes que reciben secuencia de inducción rápida después de una lesión traumática y determinó que la administración del fármaco era segura durante la secuencia de inducción rápida5.
Sin embargo, un problema potencial es que la administración de lidocaína depende del tiempo. Algunos autores sugieren que para tener un posible beneficio para el paciente que recibe secuencia de inducción rápida, la lidocaína debe administrarse por lo menos 2 minutos antes de la laringoscopía6. Esperar un tiempo adicional de 2 minutos para intubar a un paciente con traumatismo craneoencefálico puede ser un riesgo mayor, ya que durante este tiempo los pacientes pueden permanecer en hipoxia, potencial broncoaspiración y en lucha continua, lo que agrava aún más el aumento de la PIC. La lidocaína tiene su efecto en función de la dosis, por lo que demasiada lidocaína puede ser perjudicial. Mientras que se produjeron cambios en la presión arterial cuando los pacientes recibieron 1.5 mg / kg de lidocaína antes de la neurocirugía, se produjo una disminución significativa de la presión arterial cuando la dosis de lidocaína se aumenta a 2 mg / kg6.
Resultado final
La lidocaína no ha demostrado prevenir un aumento de la PIC durante la secuencia de inducción rápida. Si bien no perjudica directamente a los pacientes, su administración retrasa la finalización de la secuencia de intubación, lo que pone al paciente en riesgo de una hipoxia continua.
Mito # 3:
La férula espinal larga es útil
Explicación del mito: Cada año, al rededor de 5 millones de pacientes son inmovilizados con un collarín cervical y una férula espinal larga, utilizando las mismas técnicas que se han enseñado en los salones de clases a los servicios médicos de emergencia durante más de 30 años. Se utilizan tres correas pequeñas para asegurar el tórax y pelvis humanas a una camilla rígida y bloques inmovilizadores de cráneo para limitar el movimiento de la cabeza. Esto, en teoría, estaba destinado a evitar el movimiento del paciente, una lesión mayor y reducir la morbilidad.

La evidencia
En cualquier población estudiada, la incidencia de lesiones de columna es baja. En pacientes con trauma multi-sistémico, las tasas de lesión de columna vertebral tienen un rango de entre 2% - 5%, mientras que la lesión de médula espinal se produce en menos del 2% de los pacientes. En incidentes menores, como caídas y colisiones de vehículos automotores con los sistemas de retención, las tasas son tan bajas como 1.2% a 0.7% Por lo tanto, se entiende bien que la mayor parte del tiempo los pacientes que se inmovilizan no tienen daño real que la inmovilización teóricamente estabilice.
Esta es una de las muchas razones por las que el American College of Surgeons hizo cambios en sus libros de texto del curso ATLS, recomendando ahora retirar a los pacientes de una camilla rígida tan rápido como posible8. James Morrissey y sus colegas demostraron en un artículo publicado en 2014 que nuestro enfoque actual de la inmovilización no ayuda a la población en general y proporcionaron pruebas de que limitando cualquier inmovilización de columna a los pacientes que no pueden pasar las pruebas de la columna vertebral, y usando después estrategias de inmovilización que eviten el uso de la férula espinal larga, disminuye inmovilizaciones innecesarias y aumenta la comodidad de los pacientes7.
Una de las revisiones más significativas sobre el uso de la férula espinal larga fue el articulo del 2013 de perspectiva conjunta de la Asociación Nacional de Médicos de servicios médicos de emergencia (NAEMSP por sus siglas en ingles) y elAmerican College of Surgeons Committee on Trauma (Comité de Trauma del Colegio Americano de Cirujanos) que afirmó que no hay beneficio comprobado de inmovilización rígida de la columna. En este artículo se discutió acerca de que la inmovilización puede causar dolor, la agitación del paciente, compromiso respiratorio y la disminución de la perfusión tisular en las zonas de presión sobre la piel del paciente contra la camilla rígida puede potencialmente causar úlceras por presión9. También se sabe que, en pacientes sanos, la inmovilización de la columna completa puede causar isquemia tisular sacra, capaz de producir una úlcera por presión dentro de los siguientes 30 minutos de permanecer en aplicación10. Además, la inmovilización provoca un aumento bastante significativo del dolor por lo que los exámenes neurológicos se vuelven menos confiables cuando el paciente permanece immobilizado11.
En el mismo artículo, la NAEMSP identificó que los pacientes con trauma penetrante en la cabeza, cuello y el torso sin déficit espinal, no necesitan inmovilización y que la inmovilización en realidad provoca un retraso en el transporte que puede ser lo suficientemente importante como para aumentar la morbilidad y mortalidad del paciente9. Además, la férula espinal larga no proporciona ningún beneficio adicional, incluso cuando se utilizan correctamente. Cuando los pacientes de dos grandes sistemas de trauma fueron comparados, uno en Nuevo México, donde se produjo la inmovilización prehospitalaria, y otro en Malasia, donde ninguna inmovilización prehospitalaria se practicó, no había diferencia en la discapacidad neurológica entre los grupos de pacientes. Los autores determinaron que, en lesiones contundentes de la médula, la inmovilización tiene poco o ningún beneficio en los resultados de los pacientes12.
Resultado final
Las camillas rígidas no tienen ningún beneficio comprobado para el paciente traumatizado y pueden ser perjudiciales al comprometer sus ventilaciones, poniéndolos en riesgo de úlceras por presión y retrasar el transporte a la atención definitiva. Dicho esto, la restricción de movimiento espinal en pacientes traumatizados sigue siendo una buena práctica.
Mito # 4:
Posición de Trendelenburg
Explicación del mito: Durante la primera parte del siglo 20, el fisiólogo estadounidense Walter Cannon sugirió colocar al paciente hasta lograr que la cabeza alcanzara una posición más baja que las piernas, fue puesta en práctica por primera vez por el cirujano alemán Friedrich Trendelenburg, en teoría, esta posición podría desplazar la sangre desde las extremidades inferiores durante el shock hemorrágico para mejorar el retorno venoso a la circulación central. La posición de Trendelenburg originalmente fue pensada para permitir un mejor campo de visión durante la cirugía abdominal al desplazar su contenido en dirección cefálica y nunca fue diseñado para los cambios de la presión arterial.
La evidencia
Las guias de primeros auxilios del 2010 de laAmerican Heart Association establecen claramente que todas las recomendaciones sobre el uso de la posición de Trendelenburg son extrapoladas a partir de estudios de expansión del volumen y no hay evidencia directa de su beneficio en el estado de shock13. Actualmente, las directrices de la AHArecomiendan mantener a los pacientes en decúbito supino en lugar de mantener las piernas elevadas.
Margo Halm realizó una excelente revisión de los estudios que se han completado sobre la posición de Trendelenburg y publicó esta revisión en 2012 en el American Journal of Critical Care. Se han completado un poco más de 20 estudios. La elevación de las piernas en un paciente en estado de shock hemorrágico regresa efectivamente 1.4% del volumen sanguíneo a la circulación central, resultando en un y leve y transitorio aumento en el gasto cardiaco en todo caso de 1 a 5 minutos. Nota, este aumento es del gasto cardíaco; el efecto sobre la presión arterial es insignificante. Además, se encontró con varios estudios, los que demostraron que, en realidad la posición de Trendelenburg produce una disminución del flujo sanguíneo cerebral, de la saturación de oxígeno, del flujo sanguíneo de las extremidades superiores y la capacidad funcional de reserva de los pulmones14. La elevación de las piernas y la pelvis del paciente puede causar movimiento del contenido abdominal y aumentar la presión contra el diafragma y la vena cava inferior, lo que limita la capacidad de los pulmones para expandirse y pone mayor presión sobre los baroreceptores dentro de la vena cava. Al comprimir los baroreceptores del cuerpo, este puede ser en realidad engañado, interpretando que el volumen sanguíneo es más alto y como resultado disminuir los mecanismos compensatorios14.
Resultado final
La evidencia demuestra que la posición de Trendelenburg no sólo no ayuda a los pacientes que sufren estado de shock hemorrágico, si no que en realidad, puede además, ser perjudicial debido a los efectos tanto ventilatorios como circulatorios.
Mito # 5:
La liberación del paciente con dispositivo Kendrick (chaleco de extracción) previene el movimiento de la columna

Kendrick (chaleco de extracción)
Kendrick Extrication Device (KED)
Explicación del mito: Después de grandes colisiones de vehículos automotores, se les enseña a los proveedores prehospitalarios que un paciente debe permanecer inmóvil dentro del vehículo y permitir el control de los movimientos solo por los equipos de rescate debidamente capacitados para retirar al paciente del vehículo y ser colocado en una férula espinal larga. Los proveedores prehospitalarios son capacitados en varias técnicas, que van desde la extracción rápida, a la aplicación de un dispositivo Kendrick de liberación (chaleco de extracción). Estamos literalmente enseñando que los pacientes pueden perder la vida si se mueven por si mismos con una lesión de la columna no reconocida.
La evidencia
En 2009, Jeffery Shafer y Rosanne Naunheim se unieron para comparar las diferencias en el movimiento de columna vertebral cuando los pacientes se apartan de un vehículo seriamente dañado en comparación a cuando el paciente se retira con la asistencia de los profesionales prehospitalarios. Estos autores realizaron cuatro pruebas con el uso de cámaras de rastreo de movimiento y sensores colocados estratégicamente en sus pacientes voluntarios: la auto-liberación con y sin un collarín cervical y la extracción por los rescatistas directamente en una férula espinal larga, y mediante el uso de un chaleco de extracción. En cada prueba el movimiento de la columna vertebral se registró al mismo tiempo en conjunto con los cambios de principio a fin, así como el rango de movimientos.
La auto-liberación sin collarín cervical produjo un cambio promedio de 8.7 grados de movimiento (desviación estándar 11.9 grados) en la columna cervical con un rango de movimiento sobre 31 grados; la aplicación de un collarín cervical reduce el cambio general a 1.4 grados (desviación estándar 4 grados) con un rango de movimiento de 6.4 grados. La extracción estándar en una camilla rígida produjo un promedio de 1 grado (desviación estándar 4.5 grados); sin embargo, el rango de movimiento era 26.6 grados, y cuando se utilizó un chaleco de extracción para ayudar con la liberación, produjo en general un cambio en el paciente de 2 grados (desviación estándar 2.3 grados) ¡con un rango de movimiento de 31.1 grados!
Basados en este estudio, los autores concluyeron que la manipulación del paciente para aplicar un chaleco y deslizarlo sobre una férula espinal larga directamente desde un vehículo causa más movimiento de la columna vertebral que la colocación de un collarín cervical y permitiendo al paciente liberarse a sí mismo y caminar a hacia la camilla15. Un estudio similar fue repetido por Jack Engsberg y sus colegas, y fue publicado en Journal of Emergency Medicine en 2013. Estos investigadores encontraron que la aplicación de un chaleco durante el proceso de extracción causa más movimiento de la columna vertebral que la extracción asistida directamente sobre una tabla de inmovilización espinal y se compara con una auto-extracción del paciente después de colocarle un collarín cervical16.
Resultado final
El dispositivo chaleco Kendrick aumenta el movimiento de columna vertebral durante el proceso de liberación; es necesario considerar y explorar métodos alternativos de liberación.
Mito # 6:
Nunca retire un apósito de una herida sangrante; cuando sangra a través de éste ¡solo añada más apósitos!
Explicación del mito: Todos los principales recursos de primeros auxilios indican que se debe aplicar un aposito en cualquier hemorragia no controlada, y si éste se empapa de sangre, se deben añadir más apósitos sobre el original, pero no quitar el apósito empapado de sangre. El reclamo es que retirar el apósito original puede destruir los coágulos que se están formando, haciendo que el paciente vuelva a sangrar.
La evidencia
Para empezar a abordar este mito es importante entender los fundamentos de la hemostasia, el proceso a través del cual se forman los coágulos. Cuando se produce una lesión en un vaso sanguíneo, el colágeno y los factores de Von Willebrand (vWF) están expuestos y promueven que las plaquetas se adhieran a la superficie de la herida. Como se produce la agregación plaquetaria, se desarrolla un tapón que detiene la hemorragia. La agregación de plaquetas se produce a lo largo de tejido humano. Una vez que un tapón de plaquetas se produce y la hemorragia se detiene, una malla de fibrina se empieza a formar lo que estabiliza el coágulo y lo fortalece.
Cuando se aplica un apósito sobre una herida, el objetivo es detener el sangrado. Esto se completa con éxito el 95% de las veces con presión aplicada directamente sobre el tejido lesionado. La clave para realizar presión directa es aplicar una presión adecuada en el tejido lesionado y en el vaso lesionado. Cuando la presión es generalmente aplicada alrededor de la herida es típicamente una presión inadecuada para detener la hemorragia. Realizar presión directa significa dirigir la presión directamente en el tejido sangrante.

No hay algún ensayo clínico que demuestre que la eliminación de un vendaje empapado de sangre causará la eliminación de coágulos o haga que el proceso de coagulación tenga que empezar de nuevo. Cuando se aplican grandes y voluminosos vendajes sobre los sitios de hemorragia se vuelve muy difícil aplicar presión directa sobre la herida y como resultado se produce más presión generalizada alrededor de la lesión. En este punto, el apósito se convierte en una fuente para la recolectar la sangre perdida y esta haciendo muy poco en realidad para controlar la hemorragia.
Los apósitos que rápidamente se saturan con sangre son una indicación de que no se ha aplicado la presión adecuada al sitio de la hemorragia. Simplemente añadir más apósitos en la parte superior de la lesión hará poco más que absorber más sangre; no ayudará a controlar la hemorragia o apoyar la formación de coágulos. Cuando un vendaje se empapa de sangre, debe retirarlo y aplicar presión mejor dirigida con un apósito limpio.
En 2014, el American College of Surgeons publicó un artículo acerca de su posición sobre las estrategias prehospitalarias del control de hemorragias. En este trabajo se identifica que la presión directa bien ejecutada es probable que controle la hemorragia en la mayoría de los casos. Cuando la hemorragia no se puede controlar con presión directa bien realizada, recomiendan que el siguiente paso sea la colocación de un torniquete para lesiones de las extremidades. En casos en los que un torniquete no se puede aplicar recomiendan añadir un agente hemostático a un vendaje de presión. Los apósitos hemostáticos deben aplicarse directamente a la fuente del sangrado con el fin de que funcionen17.
Resultado final
Si la presión directa inicial falla para controlar la hemorragia, quite el vendaje y aplique presión directa correctamente ubicada sobre la hemorragia. Cuando esto falla, se debe utilizar un torniquete o un agente hemostático.
Mito # 7:
La presencia de pulso radial significa a una presión arterial sistólica de por lo menos 80 mmHg; el pulso carótido significa una presión arterial sistólica de al menos 60 mmHg
Explicación del mito: La regla 80/70/60 para puntos de pulso carotídeo, femoral y radial para predecir la presión arterial ha sido enseñada durante mucho tiempo tanto en la medicina prehospitalaria como en cursos de Soporte Vital Avanzado en Trauma. La teoría indica que la presencia de un pulso radial indica una presión arterial sistólica es de por lo menos 80 mmHg, y a continuación un pulso femoral y carótideo, indican presión sistólica de 70 mmHg y 60 mmHg respectivamente.
La evidencia
Este mito fue desafiado en un artículo titulado "La exactitud de las guias del Soporte Vital Avanzado en Trauma de la predicción de la presión arterial sistólica usando los pulsos carotideo, femoral y radial: Estudio observacional", publicado en el British Medical Journal. En este artículo se estudió a pacientes con trauma mayor y se evaluó su presión arterial cuando sus pulsos radiales, luego los pulsos femorales, carótidas se perdieron. Sin excepción, todos los pacientes perdieron en secuencia primero el radial y luego pulsos femorales y por ultimo los pulsos carotideos. Sin embargo, los valores reales de estos fueron bastante sorprendentes. El ochenta y tres por ciento de los pacientes con pulsos radiales tenían una presión arterial sistólica .
En otro estudio realizado a los pacientes de la UCI en estado crítico donde las presiones arteriales radial y femoral se pueden medir de forma simultánea, los investigadores encontraron que la presión arterial media (PAM) en la arteria radial daba un sesgo promedio de 4.27 mmHg más alta que la femoral; Sin embargo, casi en un tercio de las mediciones se encontró un sesgo mayor de 10 mmHg. Teniendo en cuenta que la PAM se calcula por la ecuación [(2 x diastólica) + sistólica] / 3, este sesgo podría haber tenido una diferencia significativamente amplia en la presión arterial sistólica19. Los autores concluyeron que las lecturas periféricas se vuelven falsamente elevadas en los pacientes críticamente enfermos debido a la liberación de catecolaminas, que se producen durante el estado de shock cuando el cuerpo trata de compensarlo. Esto además afecta a la estimación de la presión arterial sistólica, el mito sugiere que los pacientes con hemorrágicas muy graves pueden tener una presión periférica falsamente elevada ya que el cuerpo trata de compensar la pérdida de sangre; es importante tener en cuenta que la presión central puede ser inferior a lo que presión arterial periférica indica.
Resultado final
Usar la regla 80/70/60 por pulsos periféricos sobreestima la presión arterial de un paciente con hemorragia y puede ponerlo en riesgo de una intervención tardía. Obtenga las presiones sanguíneas exactas. Hay un componente clave del sentido común aquí, sin embargo, si usted no puede sentir el pulso radial del paciente es probable que esté muy hipotenso y enfermo.
Mito # 8:
La hora dorada
Explicación del mito: Después de una lesión importante, los pacientes tienen una hora para llegar a un centro de atención definitiva antes de que sus probabilidades de muerte se elevan significativamente.
La evidencia
Craig Newgard (y otros) publicó un trabajo en 2015 en Annals of Emergency Medicine desafiando la verdad de la hora dorada. En su investigación se evaluaron pacientes con traumatismos, 778 de los cuales tenían estado de shock, y 1,239 pacientes con lesión cerebral traumática que fueron presentados a nivel I y centros de trauma nivel II de 81 sistemas de servicios médicos de emergencia diferentes. Compararon la mortalidad de los pacientes a los 28 días y de 6 meses de resultados de la escala de coma de Glasgow, escala ampliada de trauma (para pacientes con lesión cerebral traumática). Los investigadores no encontraron ninguna sugerencia de que el llegar a un centro de trauma a más de 60 minutos después de una lesión impacte los resultados a largo plazo. Este trabajo apoya un articulo del 2010 en Annals of Emergency Medicine que revisó más de 3,600 pacientes de trauma en estado de shock, -de los cuales 22% murieron- encontrándose a veces tan cerca como fuera del hospital, lo que no redujo el riesgo de muerte de un paciente en el hospital. Encontraron que un mayor tiempo de respuesta de los servicios médicos de emergencia, en la escena, el transporte o el tiempo total del servicio no aumentó la mortalidad20.
Un subgrupo demostró la excepción en Newgard (y otros). Los pacientes que presentaron shock hemorrágico durante la atención prehospitalaria y requirieron la intervención urgente en un centro de trauma, tenían mejor mortalidad a los 28 días cuando llegaron a un centro de trauma en los primeros 60 minutos. La misma mejora de resultados no se observó en pacientes con lesión cerebral20.
Estos dos artículos desafían la hora dorada ya que una revisión de la literatura 2001 no pudo encontrar ninguna evidencia clínica para la instrucción de este concepto21. Reconocer que la hora dorada no existe, no significa que no haya sensibilidad al tiempo en la atención hacia un centro de trauma. Pero sí significa en definitiva que no hay un umbral de 60 minutos para la disminución de la morbilidad o la mortalidad. Desafiar este mito ayuda a empujar la idea de que hay pacientes para los servicios médicos de emergencia que sólo tienen minutos para ser llevados al centro del trauma más cercano para que salven sus vidas.
En lugar de pensar en un mítico punto de referencia de 60 minutos, concentrémonos en determinar si usted tiene o no las herramientas para estabilizar al paciente, y si no, entonces transporte de manera inmediata al paciente directamente a un centro de trauma que pueda proporcionar dicha estabilización, los riesgos de un transporte urgente pueden ser mayores, incluso para los proveedores y una lesión mayor al paciente en el caso de una colisión vehicular.
Resultado final
La entrega de pacientes que sufren de una lesión traumática en un centro de trauma dentro de los primeros 60 minutos de su incidente no mejora sus resultados, a menos que presenten estado de shock hemorrágico. El transporte seguro a un centro de trauma es más importante que el transporte rápido.
Mito # 9:
El pantalón neumático anti shock (PNA) mejora los resultados
Explicación del mito: Presentado por primera vez durante la guerra de Vietnam, los pantalones antishock militares (MAST por sus siglas en inglés) y prendas anti shock neumáticas se siguen utilizando en muchos sistemas de servicios médicos de emergencia para el tratamiento del shock hemorrágico grave agudo y la estabilización ante la sospecha de fractura de pelvis. Desde su introducción impulsada en la guerra, los PNA han sido populares, aunque sus intervenciones prehospitalarias han sido poco estudiadas. La teoría detrás del PNA es que su compresión de las extremidades inferiores de distal a proximal -y abdomen, si es necesario- aumenta el retorno venoso a la circulación central, lo que aumenta el gasto cardíaco.
La evidencia
Cuando todos los compartimentos del PNA son inflados a 90 mmHg, el gasto cardíaco aumenta21. Sin embargo, con el tiempo, el gasto cardíaco, la resistencia vascular sistémica y el retorno venoso, descienden una vez más. No se ven beneficios cuando el PNA se infla con menos de 40 mmHg, y como máximo hay un aumento del 5% en el volumen sanguíneo central al inflarlo por completo22.
Mientras que algunos estudios han demostrado que la aplicación del PNA proporciona alguna capacidad de controlar la hemorragia no controlable de otro modo en las regiones de su aplicación -en las piernas o el abdomen- se ha visto el efecto contrario cuando la ubicación de la hemorragia no está dentro de las áreas de compresión del PNA. En modelos animales el tiempo de supervivencia disminuyó de 60 a 18 o 10 minutos después de la aplicación del PNA22. La correlación para un ser humano sería que, si un paciente está experimentando shock por hemotórax, el PNA podría empeorar su hemorragia.
Sólo unos pocos estudios han evaluado la colocación prehospitalaria del PNA en pacientes humanos que experimentan shock hemorrágico descompensado en servicios médicos de emergencia. Dos de estos estudios no demostraron un aumento de la supervivencia con la aplicación de PNA, y un ensayo prospectivo aleatorio demostró un aumento del 6% en la mortalidad con su aplicación22. En general, si bien hay instancias selectas en las que el PNA puede proporcionar control de la hemorragia y aumentar las probabilidades de un paciente que es ingresado al hospital, hay pocos o ningún dato que sugiera la mejora en los resultados del paciente. Esto se debe a que el PNA no tiene impacto alguno en el flujo sanguíneo proximal a las arterias renales23. Por último, una revisión de Cochrane determinó que el uso del PNA no disminuye la estancia hospitalaria del paciente o en la UCI, y no tienen ningún impacto en la morbilidad o mortalidad del paciente24.
Resultado final
Probablemente el pantalón neumático anti shock no tiene ningún beneficio para los pacientes de trauma, aunque hay información limitada sobre pacientes con tiempos prolongados de transporte, trauma en las extremidades inferiores y fracturas de pelvis. Dada la escasez de evidencia de algún beneficio adicional, las férulas de tracción y los sujetadores pélvicos parecen ser las intervenciones más enfocadas para estas lesiones.
Resumen
La medicina basada en la evidencia va a cambiar continuamente los paradigmas en los que se practica la medicina de emergencia. Hace quince años, los torniquetes fueron un último recurso y a menudo considerados una forma garantizada de perder una extremidad; hoy son un estándar de oro en el control de la hemorragia. Creer en algo, ponerlo en práctica, después enterarnos que es falso, en medicina, no hace a alguien un mal proveedor, ni quiere decir que esté equivocado. Simplemente significa que la medicina de emergencia y los servicios médicos de emergencia continúan desarrollándose como una profesión, y nuestro conjunto de evidencias seguirá creciendo a medida que aprendemos más sobre el cuidado prehospitalario.
Mientras nos preparamos para retirar el pantalón neumático anti shock, la férula espinal larga, la lidocaina, y entender a la hora dorada en definitiva más bien como un concepto de 60 minutos, es importante mantener un ojo crítico para la próxima intervención que realmente va a ayudar a los pacientes durante su atención prehospitalaria.
Nota: Este artículo apareció originalmente en la edición en ingles de la Revista EMS World y fue traducido por un voluntario. Si usted ve errores o quiere sugerir un cambio, favor de avisarnos por correo a editor@emsworld.com.
Traducido por Cristian Román. Cristian Román es originario de la Ciudad de México. Desde la escuela preparatoria se interesó en el ámbito de las emergencias y tiene más de 20 años de experiencia en los servicios médicos de urgencia. Ha trabajado como paramédico en varias empresas de ambulancias particulares y en Cruz Roja Mexicana, donde se graduó como Técnico en Urgencias Médicas Intermedio en la Sede Nacional. Es autor del libro de bolsillo "Atención prehospitalaria, guía de referencia del paramédico y del técnico en urgencias médicas" de la Editorial Trillas, actualmente trabaja como paramédico y rescatista en la Subdirección de Urgencias del Estado de México y como voluntario en el Heroico Cuerpo de Bomberos de Toluca, Estado de México.
Fuente: http://www.emsworld.com/article/12159552/revista-derribando-los-mximos-mitos-del-trauma


domingo, 30 de julio de 2017

Prehospital Traumatic Cardiac Arrest "An Evidence-Based Review" By Matthew Chinn, MD , M. Riccardo Colella, DO, MPH

Prehospital Traumatic Cardiac Arrest "An Evidence-Based Review"
By Matthew Chinn, MD , M. Riccardo Colella, DO, MPH
Blog by Dr. Ramon Reyes, MD

Photo courtesy Dave Rynders An Evidence-Based Review of Prehospital Traumatic Cardiac Arres

An Evidence-Based Review of Prehospital Traumatic Cardiac Arrest


 By  , 
"Medic 1, please respond to 123 Maple Tree Drive for a gunshot wound."
After a short drive, you arrive at a scene that has been secured by police to see a young male lying supine in the middle of the road with several gunshot wounds to his chest. He yells "help me" several times before going unresponsive. You check for a pulse and find none.
What interventions should be considered? Are advanced cardiac life support (ACLS) medications and guidelines appropriate to follow? Should you transport the patient in cardiac arrest if the nearest trauma center is five minutes away? What about 20 minutes away?

Current Guidelines

Unintentional injuries are the fourth most common cause of death among all, and the most common among children and young adults.1 Although many systems have established trauma care guidelines, the management of traumatic cardiac arrest often is inconsistent and variable. The issue of futility in the resuscitation of a traumatic cardiac arrest is one that is often brought up when discussing the merits of resuscitation.
The National Association of EMS Physicians and the American College of Surgeons Committee on Trauma (NAEMSP/ASCOT) stated in their consensus guidelines in 2012 that "termination of resuscitation may be considered when there are no signs of life and there is no return of spontaneous circulation despite appropriate field EMS treatment that includes minimally interrupted cardiopulmonary resuscitation (CPR)."2

Airway management and fluid administration are generally considered standard of care; however, the NAEMSP/ASCOT recommendations are limited by the fact that "further research is appropriate to determine the optimal duration of CPR prior to terminating resuscitative efforts" and that "appropriate field EMS treatment" isn't uniformly defined. This often leaves field providers with a conundrum of what to do on scene when patients undergo traumatic cardiac arrest.2
The NAEMSP/ASCOT guidelines do offer some objective guidance on withholding resuscitation in patients with "... blunt trauma who, on the arrival of EMS personnel, are found to be apneic, pulseless, and without organized electrocardiographic activity," and in penetrating trauma when "… on the arrival of EMS personnel, are found to be pulseless and apneic and there are no other signs of life, including spontaneous movement, electrocardiographic activity, and pupillary response."3 However, providers will often encounter a patient who doesn't meet these stringent withholding guidelines upon arrival, as they're in pulseless electrical activity (PEA) or have other signs of life, or they may begin treatment on a patient who will then undergo a witnessed cardiac arrest and thus fall into the termination guidelines which are far less well defined.
The lack of adherence to guidelines and provider uncertainty with resuscitation is best highlighted with a study from 2010, which showed that seven (21%) of 33 of the nation's largest cities EMS systems would transport an "asystolic blunt trauma patient emergently" or "leave the transport decision to paramedic judgment" and 15 (46%) would transport an "asystolic penetrating trauma patient." The study also found that 27 (82%) would transport penetrating trauma patients and 20 (61%) would transport blunt trauma patients with persistent ECG activity but no palpable pulses.4
The vagueness in the guidelines combined with competing evidence discussed in this article drives field provider and medical director uncertainty regarding the appropriate field management of traumatic cardiac arrest.


Background

Much of the early prehospital research would seem to show that outcomes of patients in traumatic cardiac arrest were dismal. A study from 1982 found no survivors from blunt or penetrating truncal trauma who underwent CPR for more than three minutes in the prehospital setting.5 In 1993, another study found no survivors from traumatic cardiac arrest who had CPR performed at the scene or during transport. The authors argued that "the wisdom of transporting trauma victims suffering cardiopulmonary arrest at the scene or during transport must be questioned."6 Another study, published in 2003, concluded that patients who had a "combination of no respiratory rate, no systolic blood pressure, and a Glasgow Coma Score of 3 should be declared dead on scene."7
With the published literature arguing against the transport of traumatic cardiac arrest patients, many EMS services took a less aggressive approach to resuscitating patients in traumatic cardiac arrest.
Other studies, however, supported better outcomes for traumatic cardiac arrest patients. A 2007 study reported a survival rate of 19.5% of patients who underwent CPR on scene from traumatic arrest with ROSC and 17.2% in all traumatic cardiac arrest patients. Impressively, the authors also found a survival rate of 7.7% on patients with circulatory and respiratory arrest and a Glasgow coma score of 3 on scene. It's important to note that the German EMS system from which the data were abstracted from utilizes physicians on scene. Also worth considering is that the large proportion of these traumatic arrests (94.3%) were from blunt trauma-interesting given the perceived better outcomes of penetrating trauma that will be discussed later.8
A 2006 study from London Air Ambulance found that 7.5% of patients who underwent traumatic cardiac arrest on scene survived to hospital discharge. The authors argued that under the 2003 NAESMP/ASCOT guidelines, several of their survivors would have met termination criteria, concluding that "outcome [for patients in traumatic cardiac arrest] is still poor but, for reasons that are unclear, better than previously described." It's worth noting that this service also utilizes physicians on scene and several patients underwent scene thoracotomies.9
A 2004 study reviewing patients who underwent traumatic cardiac arrest and were subsequently transported to the ED found that 7.6% of the patients survived to discharge. They also found that "three of our survivors (21.4%) had EMS CPR times greater than 15 minutes, and 93% of survivors exceeded the recommended 15-minute total transportation time." The authors concluded that "the survival of traumatic cardiopulmonary arrest patients cannot be predicted in the urban prehospital setting," and "guidelines may not be applicable to urban systems with rapid transport to a Level 1 trauma center."10
What's important to recognize regarding traumatic arrest is that "survival rates are highly variable depending on the etiology, and traumatic pathologies associated with an improved chance of successful resuscitation include hypoxia, tension pneumothorax and cardiac tamponade."11
Finally, a study from Madrid, Spain, found that return of spontaneous circulation was obtained in 49.1% of traumatic cardiac arrest patients, of which 6.6% obtained a complete neurological recovery. As with other European studies, physicians were integrated into the prehospital response in this study.12
These studies reflect significantly improved survival rates that approach or eclipse the national average for medical cardiac arrests, for which there's little argument about aggressive initial resuscitation. They make the strong argument that more aggressive resuscitation may be supported for traumatic cardiac arrest.
The management futility of traumatic cardiac arrest seems to be more complex than early published guidelines would suggest, and the literature is inconclusive in establishing perfectly sensitive markers for withholding or terminating resuscitation. This competing literature likely leads to the current state of management of traumatic cardiac arrest.

Characteristics

Penetrating vs. blunt traumatic cardiac arrest: Historically, one of the most important factors that should be considered in the management of traumatic cardiac arrest is the etiology of the traumatic cardiac arrest. Penetrating trauma-gunshot wounds and stab wounds in particular-have much better outcomes than blunt traumatic arrest. In fact, the trauma surgical societies' thoracotomy guidelines are notably more aggressive with penetrating trauma than they are with blunt trauma. The Eastern Association for the Surgery of Trauma's guidelines has their strongest recommendation for thoracotomy for penetrating trauma to the thoracic area. The Western Trauma Association's guidelines extend the downtime for consideration of thoracotomy from 10 minutes with blunt trauma to 15 minutes with penetrating trauma. As such, more consideration should be given to load and go transport to a trauma center if penetrating trauma is the etiology, in particular if isolated to the thoracic area and in close proximity to a trauma center.13,14 It should be noted however that there are studies which don't show significant differences or demonstrate similar survival rates in blunt trauma, and that both U.S. trauma surgery guidelines still even suggest thoracotomy as a possible intervention for blunt traumatic arrest patients.8,10,12-14
Rhythm analysis: Traditionally, a patient in asystole has had an extremely poor outcome from traumatic cardiac arrest. The 2013 NAEMSP/ASCOT paper states that "... analysis of the existing literature demonstrates that patients in an asystolic rhythm have extremely low odds of survival (<1 style="border: 0px; font-family: inherit; font-size: 16px; font-style: inherit; font-weight: inherit; margin: 0px; outline: 0px; padding: 0px;" sup="">15
 However, one recent study showed a survival rate of 2.7% in patients with an initial rhythm of asystole, much less than other rhythms, but higher than suggested previously. Other studies show isolated cases of survival as well.10 Certainly these rates are much lower than other rhythms and a few isolated cases do not necessarily refute the general consensus, but they should be noted for completion sake.12
Additionally, several studies show poor outcome in patients with PEA at initial rates< 40 beats per minute with a rate > 40 beats per minute shown to be an independent predictor of survival.10 Patients in wide complex rhythms should be treated with defibrillation as per the American Heart Assocation (AHA) guidelines.16 Significant consideration should be given to medical causes of arrest as well when considering termination in these patients. Outcomes for patients in these wide complex rhythms have been shown to be significantly better than those in asystole or slow PEA.12
Witnessed vs. unwitnessed: Given the above information, unwitnessed traumatic cardiac arrest patients who present in asystole after either blunt or penetrating trauma are unlikely to survive and the current guidelines support withholding resuscitation. Witnessed traumatic cardiac arrest patients will benefit from aggressive attempts at resuscitation on scene including fluids, CPR, and procedural interventions as discussed below, and potentially rapid transport to a trauma center for a select subset of patients. Distance and time to a trauma center for witnessed arrest patients is vital to the decision to transport, as those patients who have extended transport times (i.e., > 10-15 minutes) will likely not fit into the guidelines for thoracotomy. It may be reasonable to manage all unwitnessed traumatic arrest patients on scene due to the inability to establish a downtime and thus the likelihood that they won't not be a candidate for thoracotomy based on U.S. guidelines.

Clinical Controversies

Role of epinephrine: The 2010 AHA Guidelines for CPR and Emergency Cardiovascular Care makes no mention of the use of ACLS drugs in the section on cardiac arrest associated with trauma. Even within the realm of all causes of cardiac arrest, there's much dispute on the efficacy of epinephrine.16
A single randomized controlled trial conducted on the use of epinephrine for all-cause out of hospital cardiac arrest found that patients receiving epinephrine had higher rates of ROSC with no statistically significant improvement in survival to hospital discharge, despite overall higher rates of survival to discharge (1.9% vs. 4.0%). There were several limitations to the study and its authors were unable to recruit their full sample size potentially leading to the lack of statistical significance in their survival to discharge rates. Additionally, this was an all-cause out-of-hospital study of cardiac arrest, with the majority of patients with a cardiac cause cited.17
In a meta-analysis on prehospital use of epinephrine in cardiac arrest, the authors noted increased prehospital ROSC with the use of epinephrine, but no improvement in overall ROSC, hospital admission or survival to discharge.18
A retrospective review on epinephrine administration in children with traumatic cardiac arrest-an isolated study looking at traumatic causes only-found increased rates of ROSC, but no improvement in survival or good neurological outcome.19
Some literature would even suggest a negative effect on tissue perfusion in hemorrhagic shock with the use of epinephrine, and that given the natural rise in catecholamines in hemorrhagic shock, additional vasopressors would be unjustified.20
The evidence on epinephrine use in medical cardiac arrest is equivocal at best, and with the characteristics of traumatic cardiac arrest being very different, it's likely that there's limited to no role for epinephrine in the management of traumatic cardiac arrest.
Role of external compressions: Since the 1960s, external compressions have been the hallmark of management of cardiac arrest. However, much of the early data have been obtained on medical cardiac arrests. Little to no literature currently exists looking at patients in traumatic cardiac arrest.
A study in baboons found that external cardiac compressions increased the systolic blood pressure (BP) in the setting of hemorrhagic shock and in cardiac tamponade. However, these increases in BP were significantly less than the response to their subjects with non-traumatic, normovolemic cardiac arrest. Since the cause of traumatic arrests involve more commonly hemorrhagic shock for which there was less effect, it's thought that more emphasis should be placed on procedural interventions and resuscitation than external cardiac compressions. Additionally, the use of external cardiac compressions on a patient with cardiac tamponade may worsen the cardiac output by increasing the intrapericardial pressure.21,22
A recent best evidence report on the efficacy of chest compressions in children in traumatic cardiac arrest found no direct evidence to answer the question.23 However, the NAEMSP/ASCOT guidelines clearly state that CPR is an integral part of in the management of traumatic arrest.2 At this time, while external cardiac compression has become standard of care and recommended by the national guidelines, there's no direct evidence to support its use and they shouldn't impede procedural interventions in patients with traumatic cardiac arrest which may be of more help.
Transport guidelines: Transportation of patients in cardiac arrest comes with many risks to providers, the patient and the public. The management of medical cardiac arrest patients is relatively uniform and there are minimal differences in the resuscitation of patients in the field vs. in an ED; therefore, it often doesn't make sense to transport medical cardiac arrest patients given the risks of expedient transport and the difficulty of managing a resuscitation in the back of an ambulance.
However, there may be some special circumstances for traumatic arrest patients that suggest transport is beneficial. A 1982 study, for example, found that the prompt transport of patients with penetrating heart injuries resulted in higher rates of survival than those who received resuscitation on scene.24
The argument of transportation revolves around the surgical interventions that may be available in a hospital that aren't available to prehospital providers in the field, such as ED thoracotomy and chest tube insertion. This may be reflected in the improved survival of traumatic arrest patients from the recent European studies which utilize physician providers in the field performing some of these procedures within a short time of cardiac arrest.8,9,12
In the U.S., ED thoracotomy is the surgical procedure of choice for traumatic arrest and something that's rarely an option in the prehospital setting. Although local resources and policy, in particular closeness of a trauma center, should dictate the protocols surrounding the transportation of patients in cardiac arrest, it should be recognized that there may be a role for very selective emergent transportation of patients in traumatic cardiac arrest to hospitals to potentially undergo this procedure. It's reasonable to consider rapid transportation in a subset of patients whose etiology and characteristics include: witnessed arrest, penetrating trauma of thoracic location, and close (10-15 minute) proximity to a trauma center.13,14

Procedural Interventions

Needle thoracostomy: It seems reasonable to strongly consider needle thoracostomy in traumatic cardiac arrest. The incidence of tension pneumothorax in one study of traumatic arrest patients was 5.7%, and the placement of a chest tube was detected as statistically significant in increasing the probability of survival. The authors recommend on-scene chest decompression for patients in traumatic cardiac arrest.8 This was supported by another study that also recommended chest decompression in traumatic cardiac arrest as part of the resuscitation effort.25
The length and size of the catheter is an area of debate regarding this procedure. The traditional use of 14-gauge IV catheters at the standard midclavicular line has come under scrutiny. One study showed that a 5.0 cm catheter would be unlikely to access the pleural cavity in half of adult patients in the standard position. They also found that the 5th intercostal space, midaxillary line was a better option for placement.26 This is supported by a study that showed that a 4.4 cm catheter would be unsuccessful in 50% of trauma patients determined by CT in the standard location.27 Another study showed that the fifth intercostal space was statistically thinner than the traditional second intercostal space in adult cadavers. If using a standard 5.0 cm angiocath, the study's authors found that only 58% of placement at the traditional site would have been successful vs. 100% success at the alternate site.28
Therefore, it should be recommended that providers ensure that they have longer needles than the standard 14-gauge angiocath and access to alternate sites, such as the mid- or anterior axillary line, of decompression to ensure penetration into the pleural cavity. There's also literature to support the more aggressive use of needle decompression in traumatic cardiac arrest as part of the standard resuscitation effort.
Resuscitative thoracotomy: In a review of the current literature in the U.S. regarding resuscitative thoracotomies, the current guidelines suggest that a patient may be a candidate for this procedure if presented within 10-15 minutes of the time of traumatic cardiac arrest and based on mechanism and signs of life.
The Western Trauma Association's data suggests that there were no survivors of blunt trauma with > 10 minutes of prehospital CPR and penetrating trauma with > 15 minutes of prehospital CPR. They support consideration of thoracotomy within that timeframe. They also recognize that case reports exist outside of their data of patient survival beyond their studies time end points and go so far as to criticize the 2003 NAEMSP/ASCOT guidelines as "excessively restrictive."13
The Eastern Association for the Surgery of Trauma published guidelines that remove any time durations of CPR and instead rely on signs of life. They suggest that a thoracotomy is either strongly or conditionally recommended for patients with penetrating injuries both with and without signs of life and blunt trauma with signs of life only.14
These guidelines would seem to support the transport of patients in traumatic cardiac arrest who reside in a short geographical distance from trauma centers with prompt surgical intervention available. For those services with access to physicians in the prehospital setting, as in many of the European literature, prehospital thoracotomy may be supported.8,9,12
Pericardiocentesis: Pericardiocentesis is within the scope of practice of many paramedics. In the setting of pericardial tamponade, it may be used as a temporizing procedure until definitive surgical intervention is made. The available literature is limited in applicability as most literature is hospital based. One study concluded that there remains a limited role for pericardiocentesis in non-trauma centers. This study isn't directly applicable to prehospital providers. For many EDs, the broad application of ultrasound to evaluate the pericardium has led to a decrease in empiric pericardiocentesis. Additionally, it isn't without iatrogenic injury risk, including injury to the myocardium, diaphragm and lung among others.29 The routine application of pericardiocentesis in traumatic cardiac arrest isn't supported in the literature, but should be considered for isolated chest wounds, in particular from stabbing mechanisms.
Ultrasound: The application of ultrasound in the treatment of prehospital traumatic arrest lies in its abilities to diagnose cardiac tamponade, evaluate cardiac activity and evaluate for other chest or abdominal injury. The enhanced focused assessment with sonography in trauma (eFAST) exam includes cardiac, thoracic and abdominal views which may show tamponade, intra-abdominal hemorrhage and even pneumothorax. Additionally, ultrasound may be able to quantify fluid status that may suggest a hypovolemic state and the need for further crystalloid or colloid resuscitation.22 It may also be used to evaluate for cardiac standstill and confirm the decision to terminate resuscitation.
In the U.S., paramedic providers aren't traditionally trained in the use of ultrasound in the field. Recent advances in technology, however, have made ultrasound more accessible to prehospital providers, and several EMS systems around the country have adopted the technology and trained providers. In many countries where physicians are a standard part of the prehospital response, ultrasound has demonstrated clinical advantages that may aid in treatment and assessment of patients in traumatic cardiac arrest.12 It has been shown to be feasible and more reliable in the detection of intra-abdominal hemorrhage and cardiac tamponade compared with standard physical exam and vital sign assessment. Despite this, it should be noted that there's currently no literature that correlates the use of ultrasound to improvement in treatment of
trauma patients.30
Point of care (POC) testing: POC testing is available to limited EMS services in the U.S. Various devices can assess hemoglobin, blood gases, lactic acid, coagulation measures, including thromboelastography, and other lab values. The utility of these devices is limited in traumatic cardiac arrest. They may, however, be useful in monitoring the resuscitation of trauma patients prior to arrest and during resuscitation. TEG and coagulation testing, lactate and other measures have been used as markers of resuscitation for many years to guide a more thoughtful approach to resuscitation of the traumatically injured, however, in the setting of traumatic arrest, there's no current literature to support the use of these tests in the acute prehospital management of the patient.
POC testing may also distract providers from focusing on other tangible interventions. Very few studies can be found looking at the prehospital application of POC devices as a monitor of resuscitation in the prehospital setting with most exploring the feasibility and not patient outcomes.31 Additionally, end-tidal carbon dioxide (EtCO2) has been used to try to predict survival with values < 10 mmHg indicating poor outcomes, albeit with most literature being in medical cardiac arrest. This may be a useful measure as a monitor of resuscitation, with down trending or low levels (< 10mmHg) indicating worsening patient outcomes.

Conclusion & Sample Pathway

Recent literature would suggest that certain patients may benefit from aggressive resuscitation and rapid transport while in traumatic cardiac arrest. There exists some data that offer similar survival rates to those with medical causes of cardiac arrest, albeit many studies done in a different prehospital environment.
Penetrating trauma patients in particular may benefit from load-and-go treatment in some circumstances. Asytolic and slow PEA are indicators of worse outcome; wide complex rhythms should be managed with defibrillation and strong consideration of a medical cause. These rhythms have the highest rates of survival. There's no evidence to support the routine use of epinephrine in traumatic cardiac arrest. External cardiac compressions are standard of care, however, they shouldn't impede the performance of procedural interventions and fluid resuscitation.
The transport of patients in traumatic cardiac arrest is not always contraindicated, and in the right circumstances may offer potential benefit to the patient. At this time, the more aggressive use of needle thoracostomy is supported by evidence. The use of larger angiocaths and alternate sites of approach should be strongly considered to ensure penetration.
Within the areas of ultrasound and point of care testing, there may be future implications, but currently there's a sparse amount of literature to support its regular use in the prehospital setting outside of evaluation for cardiac standstill. There's still a lack of a completely sensitive time frame for which to terminate resuscitation.
We propose a sample pathway based on the evidence, with the understanding that it may not account for isolated cases of survival discussed in the article:
1. Patients meeting the NAEMSP/ASCOT withholding resuscitation guidelines may have no resuscitation started and be declared immediately on scene.
2. If patient develops traumatic arrest from penetrating trauma to thorax, transport immediately to trauma center if within 10 minutes.
3. If patient presents with penetrating traumatic arrest or develops penetrating traumatic arrest not meeting this strict guideline above for transport, initiate resuscitation on scene and transport only with ROSC.
4. If patient presents with blunt traumatic arrest or develops blunt traumatic arrest, initiate resuscitation on scene and transport only with ROSC.
5. Standard resuscitation should include: fluid bolus, procedural interventions (e.g., needle thoracostomy, pericardiocentesis, thoractomy, etc.) as indicated, external cardiac compressions, airway management, and medical direction consultation as per protocol for further management and/or termination order.
6. Consider consultation for termination if all indicated procedural interventions are completed, airway is managed, fluid bolus is administered, the rhythm changes to or is asystole or slow (< 40 beats per minute) PEA, EtCO2 is < 10 mmHg, and/or downtime is > 15 minutes.

Case Conclusion

What interventions should be considered? Needle decompression, airway management, and rapid fluid administration should be considered.
Are ACLS medications and guidelines appropriate to follow? No, there's no established role for epinephrine in the treatment of this patient and the cause of cardiac arrest is different than a medical arrest.
Should you transport the patient in cardiac arrest if the nearest trauma center is 5 minutes away? Yes. Transport in this case may provide benefit to the patient as they may be a candidate for thoracotomy or other advanced surgical procedures.
What about 20 minutes away? Likely no. The patient is unlikely to be a candidate for thoractomy and aggressive resuscitation should be done on scene with transport only with ROSC due to the risk to providers and predicted worse outcome.

References

1. Heron M. Deaths: Leading causes for 2013. Natl Vital Stat Rep. 2016;65(2):1-95.
2. National Association of EMS Physicians, American College of Surgeons. Termination of resuscitation for adult traumatic cardiopulmonary arrest. Prehosp Emerg Care. 2012;16(4):571.
3. National Association of EMS Physicians, American College of Surgeons. Withholding of resuscitation for adult traumatic cardiopulmonary arrest. Prehosp Emerg Care. 2013;17(2):291.
4. Brywczynski J, McKinney J, Pepe PE, et al. Emergency medical services transport decisions in posttraumatic circulatory arrest: Are national practices congruent? J Trauma. 2010;69(5):1154-1160.
5. Mattox KL, Feliciano DV. Role of external cardiac compression in truncal trauma. J Trauma. 1982;22(11):934-936.
6. Rosemurgy AS1, Norris PA, Olson SM, et al. Prehospital traumatic cardiac arrest: The cost of futility. J Trauma. 1993;35(3):468-474.
7. Stockinger ZT, McSwain NE Jr. Additional evidence in support of withholding or terminating cardiopulmonary resuscitation for trauma patients in the field. J Am Coll Surg. 2004;198(2):227-231.
8. Huber-Wagner S, Lefering R, Qvick M, et al. Outcome in 757 severely injured patients with traumatic cardiorespiratory arrest. Resuscitation. 2007;75(2):276-285.
9. Lockey D, Crewdson K, Davies G. Traumatic cardiac arrest: who are the survivors? Ann Emerg Med. 2006;48(3):240-244.
10. Pickens JJ, Copass MK, Bulger EM. Trauma patients receiving CPR: Predictors of survival. J Trauma. 2005;58(5):951-958.
11. Sherren PB, Reid C, Habig K, et al. Algorithm for the resuscitation of traumatic cardiac arrest patients in a physician-staffed helicopter emergency medical service. Crit Care. 2013;17(2):308.
12. Leis CC, Hernández CC, Blanco MJ, et al. Traumatic cardiac arrest: Should advanced life support be initiated? J Trauma Acute Care Surg. 2013;74(2):634-638.
13. Adler E. Defining the limits of resuscitative emergency department thoracotomy: A contemporary Western Trauma Association perspective. Journal of Emergency Medicine. 2011;41(2):231-232.
14. Seamon MJ, Haut ER, Van Arendonk K, et al. An evidence-based approach to patient selection for emergency department thoracotomy: A practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg. 2015;79(1):159-173.
15. Millin MG, Galvagno SM, Khandker SR, et al. Withholding and termination of resuscitation of adult cardiopulmonary arrest secondary to trauma: resource document to the joint
NAEMSP-ACSCOT position statements. J Trauma Acute Care Surg. 2013;75(3):459-467.
16. Vanden Hoek TL, Morrison LJ, Shuster M, et al. Part 12: Cardiac arrest in special situations: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2010;122(18 Suppl 3):
S829-S861.
17. Jacobs IG, Finn JC, Jelinek GA, et al. Effect of adrenaline on survival in out-of-hospital cardiac arrest: A randomised double-blind placebo-controlled trial. Resuscitation. 2011;82(9):1138-1143.
18. Atiksawedparit P, Rattanasiri S, McEvoy M, et al. Effects of prehospital adrenaline administration on out-of-hospital cardiac arrest outcomes: A systematic review and meta-analysis. Crit Care. 2014;18(4):463.
19. Lin YR, Syue YJ, Buddhakosai W, et al. Impact of different initial epinephrine treatment time points on the early postresuscitative hemodynamic status of children with traumatic out-of-hospital cardiac arrest. Medicine (Baltimore). 2016;95(12):e3195.
20. Sperry JL, Minei JP, Frankel HL, et al. Early use of vasopressors after injury: Caution before constriction. J Trauma. 2008;64(1):9-14.
21. Luna GK, Pavlin EG, Kirkman T, et al. Hemodynamic effects of external cardiac massage in trauma shock. J Trauma. 1989;29(10):1430-1433.
22. Smith JE, Rickard A, Wise D. Traumatic cardiac arrest. J R Soc Med. 2015;108(1):11-16.
23. Bowles F, Rawlinson K. BET 3: The efficacy of chest compressions in paediatric traumatic arrest. Emerg Med J. 2016;33(5):368.
24. Gervin AS, Fischer RP. The importance of prompt transport of salvage of patients with penetrating heart wounds. J Trauma. 1982;22(6):443-448.
25. Mistry N, Bleetman A, Roberts KJ. Chest decompression during the resuscitation of patients in prehospital traumatic cardiac arrest. Emerg Med J. 2009;26(10):738-740.
26. Akoglu H, Akoglu EU, Evman S, et al. Determination of the appropriate catheter length and place for needle thoracostomy by using computed tomography scans of pneumothorax patients. Injury. 2013;44(9):1177-1182.
27. Stevens RL, Rochester AA, Busko J, et al. Needle thoracostomy for tension pneumothorax: Failure predicted by chest computed tomography. Prehosp Emerg Care. 2009;13(1):14-17.
28. Inaba K, Branco BC, Eckstein M, et al. Optimal positioning for emergent needle thoracostomy: A cadaver-based study. J Trauma. 2011;71(5):1099-1103.
29. Lee TH, Ouellet JF, Cook M, et al. Pericardiocentesis in trauma: a systematic review. J Trauma Acute Care Surg. 2013;75(4):543-549.
30. Jørgensen H, Jensen CH, Dirks J. Does prehospital ultrasound improve treatment of the trauma patient? A systematic review. Eur J Emerg Med. 2010;17(5):249-253.
31. Schött U. Prehospital coagulation monitoring of resuscitation with point-of-care devices. Shock. 2014;41 Suppl 1:26-29.